Detection of the Sn(III) intermediate and the mechanism of the Sn(IV)/Sn(II) electroreduction reaction in bromide media by cyclic voltammetry and scanning electrochemical microscopy.

نویسندگان

  • Jinho Chang
  • Allen J Bard
چکیده

Fast-scan cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) were used to investigate the reduction of Sn(IV) as the hexabromo complex ion in a 2 M HBr-4 M NaBr medium. CV at scan rates to 100 V/s and SECM indicated the reaction pathway involves ligand-coupled electron transfer via an ECEC-DISP process: (1) one-electron reduction of Sn(IV)Br6(2-) to Sn(III)Br6(3-); (2) bromide dissociation of the reduced Sn(III)Br6(3-) to Sn(III)Br5(2-); (3) disproportionation of the reduced 2Sn(III)Br5(2-) to Sn(IV)Br5(-) and Sn(II)Br5(3-); (4) one-electron reduction of Sn(III)Br5(2-) to Sn(II)Br5(3-); (5) bromide dissociation from Sn(II)Br5 to Sn(II)Br4(2-). The intermediate Sn(III) species was confirmed by SECM(3-), where the Sn(III) generated at the Au tip was collected on a Au substrate in the tip generation/substrate collection mode when the distance between the tip and substrate was a few hundred nanometers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYCLIC POTENTIODYNAMIC POLARIZATION STUDY OF TERNARY PB -SN-CA ALLOY IN 2M H_2SO_4 SOLUTION

In this paper redox reaction processes and phase, formation on ternary Pb-2Sn-0.08Ca alloy utilized as insoluble lead anodes in copper electro winning cells, were investigated in 2M H__2SO__4 electrolytes, using cyclic voltammetry technique (CVA). A potential range between - 1.3V to 2.6V was chosen at various scan rates in order to study the anodic behavior and phase composition of the oxide la...

متن کامل

Electrochemical Detection of Hydrazine Using a Copper oxide Nanoparticle Modified Glassy Carbon Electrode

Metallic copper nanoparticles modified glassy carbon electrode is fabricated by reduction of CuSO4 in the presence of cetyltrimethylammonium bromide (CTAB) through potentiostatic method. As-prepared nanoparticles are characterized by scanning electron microscopy and electrochemical methods. Copper oxide modified glassy carbon electrode (nano-CuO/MGCE) is prepared using consecutive potential sca...

متن کامل

Novel Electrolyte Energy Storage Systems

We seek an approach to enable widespread deployment of grid-based storage by drastically lowering the cost of such a system. We are doing so by reexamining the fundamentals of flow battery technology and engaging in an effort in which the active redox couples, the materials that separate the couples, and the flow characteristics that dictate the rate of delivery are optimized, thereby allowing ...

متن کامل

Electrochemical Analysis of Tryptophan using a Nanostructuring Electrode with Multi-walled Carbon Nanotubes and Cetyltrimethylammonium bromide Nanocomposite

Multi-walled carbon nanotubes (MWCNTs) were immobilized on the surface of a glassy carbon electrode (GCE) in the presence of cetyltrimethylammonium bromide (CTAB) to form a MWCNTs-CTAB nanocomposite-modified electrode. The electrocatalytic response of the modified electrode towards tryptophan (Trp) was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface...

متن کامل

Dehydrogenation of Isobutane Over Nanoparticles of Pt/Sn Alloy on Pt/Sn/Na-Y Catalyst: The Effect of Tin Precursor on the Catalyst Behavior

In this research Na-Y was synthesized by hydrothermal method and used as support for preparation of Sn/Pt/Na-Y catalysts using two different tin precursors, Bu3Sn(Cl) and SnCl2.2H2O, by sequential impregnation, in which the Pt  was deposited first and in the next step Sn was deposited. The catalysts were characterized by H2 chemisorption, transmis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 1  شماره 

صفحات  -

تاریخ انتشار 2014